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ABSTRACT 

Covert channel analysis is a critical, yet challenging, security engineering task. 

Despite numerous descriptions of covert channel attacks on ground-based systems and 

networks, such attacks have not been examined in the context of data bus protocols used 

in commercial space platforms hosting government payloads. Our contribution is to 

identify relevant concerns that have yet to be addressed in this domain, largely due to the 

lack of security requirements for hosted payload space applications. In this paper, we 

describe a policy-driven threat model and then develop hypothetical attack scenarios in 

the context of the MIL-STD-1553B protocol. Our initial analysis identifies several covert 

timing and storage channels. 

  



 vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK   



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................... 1 

II. BACKGROUND AND DEFINITIONS .................................................................. 3 

III. THREAT MODEL................................................................................................ 5 

IV. CASE STUDIES .................................................................................................... 9 

A. TIMING CHANNEL – RT RESPONSE TIME DELAY .................................. 9 
B. STORAGE CHANNEL – COMMAND ILLEGALIZATION ....................... 11 
C. STORAGE CHANNEL – ACYCLIC TRANSFER ......................................... 13 

V. CONCLUSION ....................................................................................................... 17 

LIST OF REFERENCES ............................................................................................... 19 

INITIAL DISTRIBUTION LIST .................................................................................. 21 

 

  



 viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK  



 ix 

LIST OF FIGURES 

Figure 1.  Notional 1553B architecture............................................................................... 5 
Figure 2.  RT response delay timing channel. .................................................................. 10 
Figure 3.  Command illegalization storage channel.......................................................... 12 
Figure 4.  Acyclic transfer storage channel. ..................................................................... 14 
 

  



 x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK  



 xi 

LIST OF TABLES  

Table 1.  Threat models ...................................................................................................... 6 
 

  



 xii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



 1 

I. INTRODUCTION 

With the ever-increasing reliance on space-based communications, satellites have 

become targets of cyber attacks. The 2011 Report to Congress by the U.S.-China 

Economic and Security Review Commission warned, “Malicious actors can use cyber 

activities to compromise, disrupt, deny, degrade, deceive, or destroy space systems. 

Exploitations or attacks could target ground-based infrastructure, space-based systems, or 

the communications links between the two.” The Report highlighted several suspicious 

cyber events that interfered with two U.S. Government satellites as evidence of cyber 

attacks directed against U.S. satellites in 2007 and 2008. The U.S. Geological Survey and 

National Aeronautics and Space Administration confirmed the attacks on two earth 

observation satellites Landsat-7 and Terra EOS AM-1, respectively. In both cases, the 

intruders could have taken over the satellite but did not issue commands to do so [1]. It is 

unknown whether or what kind of malware was planted on these satellites for future 

Advanced Persistent Threat activities. 

In response to new fiscal realities, the U.S. space community has embraced the 

innovative re-use of commercial space platforms (SP) to host mission payloads. These 

new strategies promise to reduce cost while providing shorter mission cycles and faster 

access to space [2]. The CHIRP program was the first to use a commercial 

communication satellite to host a government payload [3]. Following the success of 

CHIRP, the U.S. Air Force issued a multiple-award contract under the Hosted Payload 

Solutions (HoPS) program to acquire on-orbit and ground services for government-

furnished hosted payloads (HPs) on commercial space platforms (SPs) [4]. The HoPS 

program specifies two reference mission architectures for protected HPs: embedded and 

dedicated-link. For the embedded HP architecture, the HP transfers its commanding and 

telemetry streams via the SP’s commanding and data handling subsystem. For the 

dedicated-link architecture, the HP transfers its commands and data through a dedicated 

transponder channel provided by the SP. In both cases, a government-supplied Hosted 

Payload Interface Unit (HPIU) provides cryptographically-enforced separation between 

the protected HP and the SP. The HPIU can support MIL-STD-1553B, SpaceWire and 

RS-422 buses [5].  
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The HoPS program plans to use encryption to prevent any information leakage 

from the HP in violation of system policy. In the case of government hosted payloads 

requiring stringent confidentiality protection, the system’s policy is naturally expressed 

as a mandatory information flow control policy (i.e., no read-up and no write-down with 

respect to levels of confidentiality). It is well-known that encryption is not sufficient to 

control all possible flows in a mandatory access control policy: covert and side channels 

may still exist in the presence of shared resources, e.g., the data buses between the HPIU 

and the space platform [6]. A covert channel allows two cooperating entities to 

communicate secretly by manipulating shared resources, in violation of the security 

policy [7,8]. In contrast, a side channel leaks information to other parties, and does not 

require the cooperation of some malicious entity on the high side. For example, two 

cooperating remote terminal (RT) devices on a MIL-STD-1553B bus may be able to 

modulate metadata using valid protocol operations to transfer information in unexpected 

and unintended ways, illegally and undetectably. 

In this work, we perform a preliminary study of protocol-based covert channels 

on the MIL-STD-1553B (1553B herein) data bus. These channels include those 

exploitable via misuse of protocol options, unused or undefined fields in a protocol data 

unit, or timing behavior. Our general strategy employs the flaw hypothesis methodology 

[9,10,11] to identify potential storage and timing channels through analysis of the 1553B 

standard and documentation of various 1553B products. 

Our work focuses on covert channel attacks against data bus protocols used in 

satellites with cross-domain capabilities, i.e., those hosting payloads operating at different 

sensitivity levels. Both types of channel may admit clandestine exfiltration of critical data 

in violation of the intended system policy. Our objective is to begin the process of 

identifying unexpected channels in hosted payload systems, laying the groundwork for 

mitigation techniques useful in real-world scenarios, i.e., to eliminate or constrain attacks 

against hosted payloads launched from a Trojan within the payload itself or from a 

compromised platform hosting the payload.  

In this paper, we define covert channels in the context of 1553B protocol, discuss 

the threat model and hypothesized attack scenarios, and present some initial findings of 

this analysis. 
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II. BACKGROUND AND DEFINITIONS 

The 1553B bus architecture [12, 13] is the focus of our study due its maturity and 

utilization in U.S. space systems. A 1553B system is comprised of a bus controller (BC) 

and one or more remote terminals (RT), connected by a serial data bus. Bus management 

is accomplished via a strict master-slave relationship between the BC and RTs. 

Optionally, there may be one or more bus monitors (BM) that can passively monitor and 

record traffic on the bus. A mission-critical system typically utilizes several 1553B buses 

to provide multiple data paths for redundancy [14, 15]. A 1553B subsystem is a 

functional unit of an RT that sends or receives data from the data bus [16]. 

The time division multiplexing, half-duplex command/response protocol defined 

in MIL-STD-1553B is commonly used in spacecraft on-board data handling. All bus 

transmissions are accessible to all units connected to the bus, but only one unit can 

“speak” at a time. The BC initiates all bus transfers by sending a command message to 

individual RTs, and each RT is required to respond with a message acknowledging 

receipt of the BC’s message.  

For the purposes of this study, we adopted the definition of a covert channel from 

A Guide to Understanding Covert Channel Analysis of Trusted Systems [17], which states 

that a covert channel is “a communication channel that allows a process to transfer 

information in a manner that violates the system’s security policy.” Other definitions 

exist. For example, Schaefer et al. stated that a covert communication channel exists if it 

is based on “transmission by storage into variables that describe resource states” [18]. 

This definition, however, is specific to the storage of variables and its context is only 

meaningful for a stateful operating system. Kemmerer defines covert channels as those 

that “use entities not normally viewed as data objects to transfer information from one 

subject to another” [19]. While this definition is more generic and can be applied to 

stateless networks, it does not address the notion that covert channels depend on a 

system’s security policy and how the system implements that policy. In this work, our use 

of the term ‘side channel’ is more closely aligned with Kemmerer’s (policy-agnostic, 

unexpected) communication channels, whereas we reserve the term ‘covert’ to describe 

channels used by entities to violate an information flow policy. 
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As applied to the 1553B protocol, the applicable security policy is a traditional 

mandatory access control policy in which the active entities with the potential to cause 

information flow, viz. subjects, map to the units connected to the 1553B bus, and 

“information” maps to data words defined in the 1553B protocol.  The data transmitted 

via 1553B data words are specifically distinguishable from other information defined in 

the 1553B protocol in that the contents of data words are not interpreted by the 1553B 

protocol in any way, i.e., have no semantic meaning to the protocol. 

This may be contrasted with other aspects of the 1553B protocol such as 

command words and status words that define the formats and semantically meaningful 

control information that form the basis of the protocol.  In this context, “covert channel” 

refers to the illegal flow of information effected via 1553B protocol constructs. 

We also adopted Kemmerer’s definitions of storage channels and timing channels. 

Specifically, a covert channel is a storage channel if “the sending process alters a 

particular data item, and the receiving process detects and interprets the value of the 

altered data to receive information covertly.” A covert channel is a timing channel if “the 

sending process modulates the amount of time required for the receiving process to 

perform a task or detect a change in an attribute, and the receiving process interprets this 

delay or lack of delay as information” [19]. 
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III. THREAT MODEL 

The 1553B standards specify three types of validation testing that a 1553B unit 

must pass to ensure conformance to the 1553B specification: electrical, protocol, and 

noise reduction [14]. Passing the validation tests does not guarantee that the design and 

implementation of a bus unit is trustworthy or free of unintended leakage channels. 

Furthermore, malicious software can be inserted during initial development, or 

intercepted and modified in the supply chain, either creating or exploiting channel 

vulnerabilities. This is a concern for all cross-domain systems and, in particular, is 

explicitly required by the Cross Domain Solution Overlay in the U.S. [20]. Our analysis 

is intended to inform relevant concerns that have yet to be expressed in this domain, i.e., 

due to the lack of an overlay for hosted payload space applications. 

For protected hosted payload missions, the critical payload data are encrypted. 

However, the protocol metadata in a 1553B message are transmitted in the clear on the 

data bus. Our covert channel analysis focuses on this type of data to find illegal 

communication channels between 1553B units connected on the same bus (see Figure 1).  

 

 

 

Figure 1.  Notional 1553B architecture. 
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In our analysis, we use the traditional multilevel security (MLS) confidentiality 

policy as modeled by Bell and LaPadula [21]. This policy disallows the flow of 

information from a unit operating at a high level of confidentiality and a unit operating at 

a low level of confidentiality. 

We began our analysis drawing from the threat models and hypothesized attack 

scenarios outlined in Table 1. A participating unit may be the BC, BM, or an RT. For our 

analysis, channels associated with cooperating units are called ‘covert channels’ whereas 

channels associated with active and passive monitoring are called ‘side channels.’ Side 

channels can be exploited to leak information without the aid of a malicious entity on the 

high side. Channels that require persistent physical access to exploit—such as channels 

exploitable via differential power analysis—are out of scope of our analysis; we believe 

these to be difficult to exploit via malicious software or firmware and, thus, may be 

unrealistic attack to consider against remote, space platforms. 

 

Table 1.  Threat models 

Threat models 

Attack scenarios 

Storage channel attacks 

Observation of protocol 
control information using 
valid protocol operations 

Storage channel attacks 

Observation of RT-specific 
protocol control information 
using RT implementation-

specific operations 

Timing channel attacks 

Observation of RT-
specific timing behavior 

Covert channel 

Cooperating units use valid 
protocol operations to 
transmit information via 
protocol control fields. 

See Section IV.C. 

Cooperating units use unit-
specific protocol behavior to 
transmit information via 
protocol control fields. 

See Section IV.B. 

Cooperating units use 
unit-specific timing 
behavior to transmit 
information. 

See Section IV.A. 

Side channel 
(active 
monitoring)  

Attacking unit (BC or RT) 
induces target RT into 
disclosing information via 
protocol control fields 
using valid protocol 
operations. 

Attacking unit (BC or RT) 
utilizes behavior unique to 
target RT to induce 
disclosure of information. 

Attacking unit (BC or RT) 
probes target RT by 
creating specific protocol 
conditions and observing 
target RT timing behavior. 

Side channel 
(passive 
monitoring) 

Attacking unit (BC, BM or 
RT) infers activity of target 
RT by monitoring protocol 
control fields. 

Attacking unit (BC, BM or 
RT) infers activity of target 
RT by monitoring target RT-
specific protocol control 
fields. 

Attacking unit (BC, BM 
or RT) infers activity of 
target RT by monitoring 
target RT timing behavior. 
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The exploitable “protocol control information” refers to any 1553B-defined 

control and status fields; 1553B-defined data payload fields are specifically excluded. 

Construction of timing channel attacks does not distinguish the use of valid protocol 

operations versus invalid and incorrect protocol operations since it is assumed all timing 

behavior of a specific RT is unique. 

Examples of design conditions that could potentially be exploited include: 1) out-

of-spec exception handling, such as the incorrect use of the subaddress field for data 

wraparound; 2) undefined behavior, such as how the BC and RTs handle undefined error 

conditions, optional parameters and optional commands; and 3) bus control and 

monitoring—for example, considering acyclic data transfer vs. scheduled data transfer by 

RTs, or considering recording-only (passive) bus monitors vs. hybrid bus monitors (i.e., 

able to serve as a back-up bus controller). 
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IV. CASE STUDIES 

This section describes three examples of the storage and timing covert channels 

shown in Table 1. The side channel scenarios (shaded in Table 1) are beyond the scope of 

this paper. 

 

A. TIMING CHANNEL – RT RESPONSE TIME DELAY 

This channel allows two cooperating RTs running at different security levels to 

use RT-specific timing behavior to transmit and observe information.  

In a 1553B system, the BC initiates all commands and each RT must respond to a 

valid command within a time period of 4 to 12 microseconds [12]. Since every connected 

RT can observe all transmissions on the data bus, one RT can identify all commands sent 

by the BC to another RT and all responses returned by the target RT. This allows for the 

existence of a potential timing channel in which a Low RT (receiver) could detect the 

covertly transmitted information by monitoring the response time delay introduced by a 

malicious High RT (sender). The signaling mechanism would be the amount of time 

delayed by the High RT before responding to a command.  

Within the allowable response time period (4-12 microseconds), if a High RT is 

capable of controlling the response time delay to a granularity of one microsecond, it can 

leak up to three bits of information per message. A number of 1553B products provide 

board-level APIs that allow applications to set the RT response time to a granularity of 

nanoseconds [22, 23, 24]. 

Figure 1 illustrates an example 1-bit timing channel scenario in which the High 

RT varies the response time to send different bit values. For normal transmissions in this 

example, the High RT responds to a command in four microseconds. To signal 0 and 1, 

the High RT increases the response time to eight and twelve microseconds, respectively. 

The Low RT extracts the leaked information by measuring the time it takes the High RT 

to respond to a valid command. 
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Figure 2.  RT response delay timing channel. 

 

To exploit this channel, a malicious High RT must be able to generate delays of 

arbitrary length before responding and a Low RT must have the ability to measure the 

response delays. A typical timing channel requires the sender and receiver to have either 

a common clock or the ability to create a time reference [17]. For this timing channel, the 

colluding RTs can use the end of a BC command as the common time reference. 

Synchronization between the two RTs can start after a command word is detected; a 

command word is always preceded by an inter-message gap of at least 4 microseconds 

(introduced by the BC), and consists of: a 3-bit sync pattern, sixteen bits of information, 

and one parity bit. 

Another requirement of this channel is that the delay length used as the signaling 

mechanism needs to be sufficiently large relative to the RT’s internal clock period to 

minimize or eliminate erroneous transmissions. 
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B. STORAGE CHANNEL – COMMAND ILLEGALIZATION 

This channel allows two cooperating RTs to use RT-specific implementation 

behavior to leak information via protocol control fields. Command illegalization is one 

such behavior.  

An illegal command is a valid command that is not in the set of commands 

specified for use with the target RT [14]. The set of illegal commands that an RT 

supports is typically defined by the RT’s subsystem via a programming interface 

provided by the RT core engine, and is kept in an illegalization database in memory [25, 

26].  

A compliant BC only issues valid commands but, depending on its design, an RT 

may treat certain commands as illegal and will return a status word with the message 

error (ME) bit set when such commands are detected. In this case, the RT will discard 

any information received with the command or disregard the request for information 

specified in the command [12]. Note that for other error conditions, the RT will set the 

ME bit in the status word but does not send the status word until the BC explicitly asks 

for it via a mode command (i.e., Transmit Status or Transmit Last Command).  

Although not required by the 1553B standards, a BC can automatically retry the 

issued command when it receives a status word response for that command with the ME 

bit set [14]. Different variations of automatic retrying exist. A BC can be programmed by 

the subsystem to retry a command multiple times on the same data bus or on the alternate 

bus of a redundant pair of data buses [27]. Another implementation can retry different 

number of times on the same bus and on the alternate bus, or retry alternately between the 

two busses for the same number of times [28]. 

For our analysis, we assume that the BC implements automatic retrying and the 

High RT supports command illegalization. The BC must retry at least once on the same 

bus and the High RT must be able to dynamically reject an arbitrary command as illegal.  

The High RT and Low RT must previously agree on when the signaling method 

will be utilized. For example, the agreement can be based on a specific command or 

commands sent from the BC. Whenever the BC sends a specific command to the High 

RT, the High RT will signal a bit by selectively rejecting the command or accepting the 
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command (see Figure 3). The Low RT observes the High RT’s action to receive the 

transmitted bit. 

 

 

Figure 3.  Command illegalization storage channel. 

 

To signal 0, the High RT rejects as illegal a command issued from the BC. When 

the BC resends the command, the High RT accepts the command and responds normally. 

The retry from the BC and subsequent normal response from the High RT is necessary to 

implement the routine operation of the High RT after the High RT falsely rejected the 

initial BC command as illegal in order to signal a bit value of 0. 

To signal 1, the High RT simply responds normally to a command issued from the 

BC. 

This method may be extended to utilize an arbitrary set of commands to signal 

information. The ability to signal information depends on how often the BC issues the 

commands that will be used to perform a signaling action. The High and Low RTs can 

use a defined set of commands to create a larger covert channel alphabet. 
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C. STORAGE CHANNEL – ACYCLIC TRANSFER 

The previous scenario demonstrates an illicit information flow based on an 

optional but commonly implemented RT feature. Another storage channel can be 

constructed using the Service Request (SR) bit in the status word. This channel enables 

two cooperating units to transmit information using valid protocol operations. 

In a 1553B system, the BC periodically issues commands to the RTs in a cyclic 

sequence. The list of commands is predefined and stored in the BC’s local memory. To 

support systems with a need for time-critical asynchronous data transfers, the 1553B 

standards affords the RT the ability to request the BC to perform operations that are not 

prescribed in the command list.  

When an RT wants to request an acyclic data transfer, it returns a status word with 

the SR bit set. Depending on the system design, when the BC detects the Service 

Requested condition, the BC either executes a predefined function or sends a Transmit 

Vector Word command to obtain additional information from the RT about the requested 

service. After receiving this command, the RT sends back a vector word specifying the 

type of service it needs with the SR bit cleared in the associated status word. The RT can 

request additional services repeatedly by keeping the SR bit set in all subsequent status 

words until all required services are done [14]. 

For our analysis, we hypothesize that the BC responds to an asynchronous service 

request by issuing the Transmit Vector Word mode command, after which the RT 

responds by transmitting a vector word. The RT may continue to issue asynchronous 

service requests, and continue to respond to Transmit Vector Word commands from the 

BC, until the RT sends a vector word that contains all zeroes and discontinues setting the 

SR bit.  

The Low RT receives bits from the High RT by observing the way the High RT 

issues an asynchronous request. If the High RT follows up the request with transmission 

of a non-zero vector word, the Low RT knows the High RT is merely performing a 

legitimate asynchronous request action. If the High RT transmits a single empty vector 

word, the Low RT interprets the High RT’s action as transmission of a bit value of 0. If 
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the High RT transmits two consecutive empty vector words, the Low RT interprets the 

High RT’s action as transmission of a bit value of 1. Figure 4 illustrates this technique. 

To signal 0, the High RT sets the SR bit in the status word returned for an 

arbitrary BC command. The BC responds by issuing a Transmit Vector Word command. 

The High RT then immediately transmits an empty (all zeros) vector word with the SR 

bit cleared. The Low RT observes the High RT’s action to receive the bit value of 0. 

 

 

Figure 4.  Acyclic transfer storage channel. 

 

In the case that the High RT needs to issue a valid asynchronous service request, 

the High RT would have transmitted a vector word that contained valid data (non-zero 

value). The Low RT is able to distinguish the High RT’s valid service request action from 

transmission of the bit value of 0 by observing the contents of the vector word. 

To signal 1, the High RT performs a similar action to signaling a 0 bit by setting 

the SR bit and transmitting an empty vector word. But instead of clearing the SR bit, the 

High RT sets the SR bit a second time. The BC will discard the vector word because it 
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contains all zeroes, but will issue the High RT a second Transmit Vector Word mode 

code because the SR bit was set again. The High RT then transmits a second empty 

vector word and clears the SR bit. 

Depending on the behavior of the BC, this method could be extended to transmit 

multiple bits of information by transmitting additional empty vector words before 

clearing the SR bit. 
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V. CONCLUSION 

This paper describes the initial findings of our study of covert channels in a 

1553B system. We have shown that it is possible to construct timing and storage channels 

by observing timing behavior, protocol control information, and RT-specific 

implementation features.  

We plan to study the three channels described in Section IV in more depth, and to 

analyze other potential covert and side channels identified in Table 1, exploring their 

characteristics through empirical study. This work will include estimation of the rate at 

which information can be sent over each channel and the feasibility and degree to which 

each channel can be exploited, calculating the channel capacity, and measuring the 

signal-to-noise ratio. 

We need to further explore methods to close or mitigate these channels. A brute 

force approach to handle the two identified storage channels is to disallow the use of 

illegalization and asynchronous service request; they are optional functionality at the 

protocol level. However, applications may require support for selected optional protocol 

operations to meet mission-critical needs.  Alternatively, a known method of handling 

covert channels is to implement an audit mechanism that can detect the exploit of a 

channel. Utilizing a bus monitor to observe and collect traffic on the bus may provide a 

way to recognize suspicious behavior, after which mitigating action may be taken. 

The increasingly popular SpaceWire standard defines a suite of protocols for 

high-speed networks on spacecraft [29]. A natural progression from the lessons learned in 

our 1553B study is to investigate potential covert channels in various SpaceWire 

protocols, e.g., wormhole routing in SpaceWire routers. 

We believe this work can help identify security requirements for building secure 

on-board communications components that can be used in satellite systems with cross 

domain capabilities such as HoPS. Understanding of the conditions under which different 

channels may exist, or could be exploited, can help address security risk in the adoption 

of the hosted payload approach. 
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